
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Optimizing the Quality of Mesh Elements

Todd Munson

Mathematics and Computer Science Division

Preprint ANL/MCS-P1260-0605

June 2005

1This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-Eng-38.
Any opinions or errors are the responsibility of the authors and not the sponsoring agency.



Optimizing the Quality of Mesh Elements 1

Optimizing the Quality of
Mesh Elements

Todd S. Munson
Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439

(tmunson@mcs.anl.gov).

1. Introduction

Discretization methods are common techniques for
computing approximate solutions to partial differen-
tial equations [7, 10, 30]. These methods decompose
the given domain into a finite set of elements, trian-
gles or tetrahedrons, for example, to produce a mesh
used within the approximation scheme. Several fac-
tors affect the accuracy of the solution obtained: the
degree of the approximation scheme and the number
of elements in the mesh [2], and the quality of the
mesh [4, 5]. Optimizing the quality of the mesh prior
to computing the approximate solution can improve
the condition number of the linear systems solved
[29], reduce the time taken to compute the solution
[15], and increase the numerical accuracy.

The savings in computational time from using the
optimized mesh can be substantial. One applica-
tion we investigated was to solve the Navier-Stokes
equations for a fluid with a moderate Reynolds num-
ber containing a dilute suspension of particles [34].
The approximate solution was obtained by applying
a spectral element method to a hexahedral mesh.
The top portion of Figure 1 shows the original mesh
constructed by applying the meshing technique de-
veloped by Lin Zhang, while the bottom depicts the
optimized mesh. The original mesh has many reg-
ular elements, while the optimized mesh loses much
of this structure. However, the spectral element
method applied required 29 hours to compute a so-
lution when using the original mesh, but only 20
hours when using the optimized mesh, a 30% reduc-
tion in time. The optimization problem was mod-
eled in AMPL [11] and solved by applying KNITRO
[8, 33]. This instance had 18,135 variables, 1,170
linear constraints, and 3,004 nonlinear constraints.
Computing an optimal mesh took approximately 33
minutes on a 2.4 GHz Intel Xeon workstation with 2
GB RAM; AMPL consumed 265 MB RAM to gener-
ate the problem, while KNITRO allocated 597 MB
RAM to solve it.

Figure 1: Original mesh (top left) and side view (top
right) and optimized mesh (bottom left) and side
view (bottom right) for fluid dynamics example.

The optimization problem we solve computes po-
sitions for the vertices in a given mesh to im-
prove the average element quality according to a
metric [13]; we do not change the mesh topology.
Many metrics have been applied to such problems
[3, 12, 14, 19, 20, 27]. We use the inverse mean-
ratio metric [21, 20], a shape-quality metric measur-
ing the distance between a trial element and an ideal
element, a regular tetrahedron, for example. The ob-
jective function for the resulting optimization prob-
lem is nonconvex and consists of the sum of many
fractional terms. The optimization problem and its
properties are developed in Section 2. Proofs for the
claims made in this section are found in [22, 23].

Applications with moving meshes or deforming ge-
ometries may require a mesh optimization step every
time the domain is modified. For example, the par-
ticles in the fluid dynamics application could move
as a function of time. In general, the time required
to optimize the mesh must not dominate the com-
putational savings achieved when solving the partial
differential equation. Therefore, we want to com-
pute an optimal mesh in a minimal amount of time
and with minimal memory requirements. We dis-
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cuss in Section 3 several techniques for improving
the performance of the KNITRO libraries on an un-
constrained version of the mesh optimization prob-
lem.

In Section 4 we discuss some of the lessons learned
while working on this application. We also mention
some of the complications associated with efficiently
solving the fluid dynamics example where the ver-
tices on the planar boundaries of the mesh are al-
lowed to move within the plane.

2. Mesh Optimization Problem

The mesh optimization problem we solve minimizes
the average inverse mean-ratio metric referenced to
an ideal element. The description of this metric fol-
lows that of Knupp [19, 20] and Freitag and Knupp
[12]. We discuss the metric only for tetrahedral el-
ements. Each tetrahedron is defined by four ver-
tices [x1, x2, x3, x4], where each vertex belongs to !3.
Other element types can be modeled by decompos-
ing them into tetrahedrons. Hexahedral elements,
for example, are decomposed into eight overlapping
tetrahedral elements.

The development of the inverse-mean ratio metric
begins by constructing the incidence function A :
!3×4 → !3×3:

A(x) := [x2 − x1, x3 − x1, x4 − x1] .

This function computes a matrix containing the
edges emanating from the first vertex of the element.
The volume of the tetrahedron is related to the de-
terminant of A(x), which can be positive or negative
depending on the labeling of the vertices. We assume
throughout that the vertices are labeled according to
the right-hand rule so that the determinant is non-
negative.

Two elements x and y have the same shape if their
edges are proportional. That is,

A(x) = σA(y)

for some σ > 0. In particular, if two elements with
nonzero volume have the same shape, then

‖A(x)A(y)−1‖2
F = ‖σI‖2

F = 3σ2

and
det(A(x)A(y)−1) = det(σI) = σ3.

The inverse mean-ratio referenced to the given ele-
ment y is then defined by a function Qy : !3×4 → !
that takes the ratio of these two quantities. In par-
ticular,

Qy(x) :=
‖A(x)A(y)−1‖2

F

3 det(A(x)A(y)−1)2/3
.

This metric has a value of one if x and y have the
same shape and a value greater than one if their
shapes differ. Moreover, it is translation, rotation,
and scale invariant. The metric values are preserved
when the same even permutation is applied to the
columns of x and y. Since y is fixed, this metric is
computed by using the QR factorization of A(y) so
that we multiply A(x) only by the upper triangular
matrix R−1. This modification reduces the number
of floating-point operations required to compute the
function, gradient, and Hessian of Qy.

A mesh consists of a set of vertices V and the
elements E connecting these vertices, where each el-
ement is an ordered set of four indices. The opti-
mization problem to minimize the average inverse
mean-ratio metric is then

min
x∈$3×|V |

θ(x) :=
1
|E|

∑

e∈E

‖A(xe)A(y)−1‖2
F

3 det(A(xe)A(y)−1)2/3

subject to det(A(xe)A(y)−1) > 0 ∀e ∈ E
xi ∈ Xi ∀i ∈ V,

where xe denotes the matrix of coordinates for el-
ement e and Xi is a set restricting the feasible lo-
cations for vertex i. In particular, the vertices on
the boundary of the mesh are usually either fixed
in space or constrained to lie on a particular piece
of the boundary of the domain, while the other ver-
tices are unrestricted. The volume constraints, the
strict inequalities in the optimization problem, en-
sure a consistent orientation in the resulting mesh.
A consistent orientation for all the elements is re-
quired for standard discretization methods to work
correctly [7]. The objective function is twice contin-
uously differentiable at all feasible points but is not
necessarily convex on this region. Furthermore, the
feasible region may be neither convex nor connected.
While the Hessian of the objective function may not
be positive definite, one can prove that ∇2

xi,xi
θ(x) is

positive definite for all i [22, 23].
The volume constraints are problematic because

they involve a strict inequality. If at least two ver-
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tices are fixed in position and the mesh is edge con-
nected (between any two elements there is a sequence
of elements whose neighbors share a common edge),
then the objective function approaches infinity for
any sequence of feasible points in which the vol-
ume of at least one element approaches zero [22].
Therefore, the volume orientation constraints can be
dropped to produce the optimization problem

min
x∈$3×|V |

1
|E|

∑

e∈E

‖A(xe)A(y)−1‖2
F

3max {det(A(xe)A(y)−1), 0}2/3

subject to xi ∈ Xi ∀i ∈ V.

In this case, the objective function is defined to have
a value of plus infinity whenever the volume of at
least one element is nonpositive. With this refor-
mulation, we must provide a starting point where
the orientation constraints are satisfied. However,
most meshing packages used to construct the orig-
inal mesh for the given domain, such as [26, 28],
provide a set of vertices satisfying the orientation
constraints.

3. Unconstrained Results

In this section, we assume that all vertices on the
boundary of the domain are fixed in position and
the remaining vertices are unrestricted. Once the
boundary vertices are removed from the problem, we
are left with an unconstrained optimization problem
with an objective function that is twice continuously
differentiable on an open set containing the level set
for the given feasible mesh.

The resulting unconstrained optimization problem
was modeled in AMPL [11] and solved by applying
KNITRO 4.0 [8, 33] and LOQO 6.06 [31, 32]. We al-
ways used the Interior/CG version of KNITRO and
the default version of LOQO for these tests. The re-
sults on a representative set of test meshes are given
in Table 1, where the number of variables and nonze-
ros in the Hessian matrix are provided for each ex-
ample. The times are reported in seconds on a 2.0
GHz Intel Xeon workstation with 4 GB RAM. No
other users were on the workstation when the re-
sults were generated, and all data and executables
were on local disk drives. Each problem was run
three times; the lowest time is reported. The largest
models could not be solved because of memory re-
quirements. In particular, AMPL consumed 567 MB

Table 1: Unconstrained results using AMPL.
Mesh Variables Nonzeros KNITRO LOQO
gear 780 8,256 1.87 2.05
foam5 867 10,518 2.34 3.20
hook 1,200 16,872 3.15 5.84
duct20 1,146 17,601 3.12 14.06
duct15 2,895 50,106 7.96 30.80
duct12 6,906 129,102 21.59 108.44
duct10 13,440 262,329 49.27 160.96
duct8 26,214 529,212 124.81 929.33
duct4 425,952 9,209,799 - -
duct2 3,323,229 45,882,111 - -

to generate the duct8 instance, while KNITRO al-
located 1,055 MB to solve it and LOQO used 1,008
MB.

Using AMPL provides many advantages: models
can be quickly constructed, derivatives are automat-
ically generated for the functions, and many numer-
ical methods are readily available to solve the result-
ing instances. In particular, one can obtain results
for the mesh optimization problems in a few days.
However, a price is paid for this convenience: it can
take considerable time to compute the optimal mesh,
and the amount of memory consumed can be large.

Since our ultimate goal is to embed mesh opti-
mization within a larger code for solving partial dif-
ferential equations, we must compute a solution in a
short amount of time with a small memory require-
ment. Therefore, we implemented a simple frame-
work that reads the description of a mesh from a file,
constructs the unconstrained optimization problem,
calls an optimization routine, and writes the solution
back to a file. When reading the mesh, we check it
for duplicated vertices, topological errors, and in-
verted elements, and we compute the vertices on the
boundary of the mesh.

The average inverse mean-ratio objective function
requires that a value of plus infinity be returned
whenever the volume constraints are not satisfied.
Therefore, if the volume of at least one element is
smaller than 1.0 × 10−14, we consider the volume
constraints to be violated, and the objective func-
tion is set to plus infinity. This strategy is reasonable
when the mesh is well scaled because the objective
function becomes very large.

The gradient and Hessian of the objective function
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are calculated analytically by assembling the gradi-
ents and Hessians for each element function into a
vector and symmetric sparse matrix. In order to fa-
cilitate the assembly of the Hessian matrix, once the
sparsity pattern is obtained, an additional vector is
calculated that tells the offset into the Hessian ma-
trix data vector where the element Hessians are to be
accumulated. The gradient and Hessian of the ele-
ments with respect to vertices fixed on the boundary
of the mesh are ignored.

The code for calculating the gradient of the ele-
ment function uses the reverse mode of automatic
differentiation [6, 16]. The code was written and re-
fined by hand to eliminate unnecessary operations,
resulting in a more efficient gradient evaluation. The
Hessian calculation uses the forward mode of differ-
entiation on the gradient evaluation. The resulting
code was written by using matrix-matrix products
for efficiency. AMPL was used to verify the cor-
rectness of the analytic gradient and Hessian evalu-
ations.

Table 2 presents the results obtained when using
the KNITRO libraries for the optimization solver.
Two versions of the code were run: one where the
Hessian matrix was directly provided to the code
in the (i, j, k) format, the “Hessian” column, and
the other where a routine for computing Hessian-
vector products was supplied, the “Product” col-
umn. The routine stores the upper triangular part of
the Hessian matrix in a block compressed sparse row
format, where each block corresponds to a vertex-
vertex interaction in the original mesh, and performs
a Hessian-vector product using this structure. The
version of KNITRO using Hessian-vector products is
faster than when the Hessian matrix is supplied and
significantly faster on the larger examples. More-
over, the block upper triangular structure stores only
one index per block, instead of two indices per vari-
able, resulting in some memory savings.

In order to reduce the computational time further,
the vertices and elements in the initial mesh were re-
ordered by using a breadth-first search ordering [25]
to improve the locality of reference prior to apply-
ing KNITRO. Figure 2 shows the sparsity pattern
for the Hessian matrix of the original and reordered
mesh for the duct8 problem. In particular, the order-
ing starts by selecting the (boundary) vertex farthest
from the origin as a starting point. A breadth-first

Table 2: Results using KNITRO libraries with orig-
inal vertex order.

Mesh Variables AMPL Hessian Product
gear 780 1.87 0.07 0.07
foam5 867 2.34 0.11 0.11
hook 1,200 3.15 0.12 0.11
duct20 1,146 3.12 0.10 0.10
duct15 2,895 7.96 0.26 0.25
duct12 6,906 21.59 0.64 0.63
duct10 13,440 49.27 1.39 1.33
duct8 26,214 124.81 3.65 3.07
duct4 425,952 - 205.11 148.46
duct2 3,323,229 - - -

Figure 2: Sparsity pattern of the Hessian matrix for
the duct8 mesh with original ordering (left) and the
breadth-first search ordering (right).

search of the vertices in the mesh is then performed.
The order in which the vertices were visited is re-
versed, as in the reverse Cuthill-McKee ordering [9],
to obtain a symmetric permutation of the vertices
for the optimization problem. The elements in the
mesh are then reordered according to when they are
referenced by the vertices. Other orderings can be
applied that may give rise to further improvements
in performance [17].

Table 3 presents the results on the original and
reordered meshes. The time for the reordered
test problems includes the cost of computing the
breadth-first search and reordering the problem
data. The savings attributed to reducing the band-
width of the matrices is considerable, especially on
the larger optimization problems.

To further improve performance, we would like to
apply an appropriate preconditioner in the conju-
gate gradient method used within the optimization
solver. For the mesh optimization problems we know
that the diagonal blocks of the Hessian matrix are
positive definite [22, 23], so a block Jacobi precondi-
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Table 3: Results using KNITRO libraries with
breadth-first search vertex order.

Original Reordered
Mesh Hessian Product Hessian Product
gear 0.07 0.07 0.07 0.07
foam5 0.11 0.11 0.11 0.11
hook 0.12 0.11 0.12 0.11
duct20 0.10 0.10 0.10 0.10
duct15 0.26 0.25 0.25 0.25
duct12 0.64 0.63 0.59 0.58
duct10 1.39 1.33 1.18 1.16
duct8 3.65 3.07 2.95 2.49
duct4 205.11 145.98 134.06 81.74
duct2 - - - -

tioner can be applied. Unfortunately, the available
version of the KNITRO libraries does not currently
allow the user to provide a preconditioner. There-
fore, a simple inexact Newton method [18, 24] with
an Armijo linesearch [1] was built on the same frame-
work to solve the mesh optimization problems.

In particular, given xk, the algorithm computes
a direction dk by solving the symmetric system of
linear equations

∇2θ(xk)dk = −∇θ(xk)

by applying a conjugate gradient method with a
block Jacobi preconditioner [25]. Since the Hessian
can be indefinite, the conjugate gradient method
may terminate with a direction of negative curva-
ture. In such a case, the base of the direction is used
as the starting point for the linesearch. The Armijo
linesearch finds the smallest nonnegative integer m
such that

θ(xk + βmdk) ≤ θ(xk) + σβm∇θ(xk)T dk,

where 0 < σ < 1
2 and 0 < β < 1 are constants.

The iterate is then updated with the rule xk+1 =
xk + βmdk, and a new direction is computed. The
algorithm terminates when ‖∇θ(xk)‖2 is less than
1.0 × 10−6.

The conjugate gradient method terminates if the
system of equations is solved to within a specified
tolerance, if a direction of negative curvature is en-
countered, or if 100 conjugate gradient iterations
have been performed. In particular, the conjugate
gradient implementation terminates when

‖∇2θ(xk)dk + ∇θ(xk)‖2 ≤ 10−2 × ‖∇θ(xk)‖2.

Table 4: Results using block Jacobi preconditioner.
Mesh Variables AMPL KNITRO Newton
gear 780 1.87 0.07 0.06
foam5 867 2.34 0.11 0.09
hook 1,200 3.15 0.11 0.09
duct20 1,146 3.12 0.10 0.07
duct15 2,895 7.96 0.25 0.19
duct12 6,906 21.59 0.58 0.45
duct10 13,440 49.27 1.16 0.88
duct8 26,214 124.81 2.49 1.78
duct4 425,952 - 81.74 46.41
duct2 3,323,229 - - 324.92

That is, the relative tolerance is used for the termi-
nation test.

Table 4 presents the final results obtained by us-
ing the reordered meshes with AMPL, the Hessian-
vector product version of KNITRO, and the inex-
act Newton method with a block Jacobi precondi-
tioner. As expected, the preconditioner helps to fur-
ther reduce the computational time. The results are
less dramatic on the smaller problems because of
the fixed time required to set up the problem; the
improvement from preconditioning is more dramatic
on the larger examples. In particular, the precondi-
tioned code was able to compute a solution to the
duct2 problem; the KNITRO libraries were termi-
nated after an hour of computational time without
finding a solution.

4. Conclusions

This article discussed an optimization problem for
finding the optimal vertex positions in a mesh ac-
cording to the average inverse mean-ratio metric.
Also presented was a computational study of three
techniques to improve solver performance on the
unconstrained version of the problem. Modifying
the data structures, reordering the problem data,
and preconditioning the iterative method can sig-
nificantly reduce the computational time, especially
for large instances.

However, developing a framework for a spe-
cific problem and validating the result is a time-
consuming task recommended only if performance is
crucial. Tweaking the implementation to make the
code more efficient is another critical step requiring a
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significant time investment. After going through this
process for the mesh optimization application, we
observed that solving the problem through AMPL
was 25–70 times slower than using the precondi-
tioned inexact Newton code and could consume over
120 times the memory.

We prefer using solver libraries rather than imple-
menting our own numerical optimization algorithms.
However, the design of the library is important to
achieve high performance. Matrix-free methods are
desirable because they allow the application devel-
oper to determine the data structures used to store
the matrices and to identify ways to efficiently per-
form the required matrix-vector products, which can
reduce both computational time and memory re-
quirements. Moreover, allowing the user to specify
a preconditioner for the iterative methods employed
can be beneficial; however, an appropriate strategy
to precondition constrained optimization problems is
an open question. Reordering the matrices to reduce
the bandwidth can also result in significant improve-
ments in time for unconstrained optimization prob-
lems. The correct reordering to use for constrained
problems is likely algorithm dependent and also an
open question.

We remark that the fluid dynamics application in
the introduction solved a constrained version of the
mesh optimization problem, where the constraints
restrict the vertices on the boundary to planes or
spheres, rather than fixing them in position. We
were able to construct a model for this application
because we knew the geometry of the problem. A
general-purpose tool for constrained mesh optimiza-
tion problems would require either knowledge of the
geometry or adding a strategy to the framework to
uncover simple geometric objects such as planes and
ellipses. The latter strategy has not yet been im-
plemented in our framework but is a planned ex-
tension. Once constraints are added to the frame-
work, we can investigate the effect of the reorder-
ing and matrix-free strategies on the solution time
when using the KNITRO libraries. Preconditioning
the constrained case and making effective use of a
good starting point in an interior-point method are
open issues. However, this work is essential for using
mesh optimization with the original fluid dynamics
application where the particles move as a function
of time.
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